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o Continuous version of power series 

o   transforms a function of t into a function of s. 

o   is a linear transform as integration is linear. 

  121 )]()([ ctgctfc   2)]([ ctf   )]([ tg  

o Why are Laplace transforms useful? 

 Solve differential equations 

 Circuit analysis (e.g. finding the complex impedance of a capacitor) 

o Laplace transforms only exist for functions of exponential type (i.e. ktCetf )( ) 
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)( tetf   does not have a Laplace transform 

 How to solve a differential equation using Laplace transforms: 

o 1. Take the Laplace transform of both sides. 

o 2. Solve for )(sF . 

o 3. Take the inverse Laplace transform  1 of both sides to find )(tf . 
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 Remembering how to do partial fractions will be very helpful! 

o Why would this method ever be preferred over previous methods? 

 This method is often shorter depending on the type of function you have, 

such as periodic functions or certain discontinuous functions 

 Common Laplace Transforms (see next page for a more complete list) 
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